مباحثی در فضاهای l^p احتمالی
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی شیراز - دانشکده ریاضی
- نویسنده سهیلا صمیمی
- استاد راهنما محمود حاجی شعبانی صدیقه جاهدی
- سال انتشار 1393
چکیده
در این پایان نامه به بیان تعریف اندازه مقدار احتمالی، مفهوم انتگرال پذیری و متناظر با آن تعریف فضای l^pاحتمالی پرداخته می شود.برای این منظور در ابتدا یک زیرمجموعه چگال برای فضای توابع توزیع یافته و در ادامه یک متر جدید روی این فضا تعریف می شود و ثابت می شود که این فضا با این متر تام می باشد و همچنین زیرفضاهای از این فضا را تعریف و با استفاده از آن به خواص جالبی در مورد فضاهای اصلی می رسیم. به علاوه با یک تعبیر مناسب به اثبات نامساوی هولدر در فضای l^pاحتمالی پرداخته و در ادامه به اثبات خواص مشابه با انتگرال های معمولی و لبک در این فضا پرداخته می شود.
منابع مشابه
مباحثی در فضاهای ناارشمیدسی
می دانیم اگر xوyدو عدد حقیقی باشند انگاه یک عدد طبیعی n با خاصیت nx>y وجود دارد،فضاهایی با خاصیت مذکور را فضاهای ارشمیدسی می نامند،اما فضاهایی نیز وجود دارند که این خاصیت برای آنها برقرار نمی باشد.در واقع تمام تواعد و اصول هندسه ارشمیدسی در مورد خطوط مستقیم،مثلث ها و اعداد در این فضاها متناقض می باشد،به آن ها فضاهای ناارشمیدسی می گوییم.ریاضی دان بسیاری به بررسی اصول وقضایایی که قبلا در فضای ارش...
مباحثی در فضاهای متریک مدولار
نظریه ی مدولارها روی فضاهای خطی در سال 1950 به وسیله ی ناکانو ارائه شد سپس در سال 1959 توسط یامومورو توسعه داده شد. به علاوه توسعه ی کاملی از این نظریه ها توسط ارلیخ و لوگزامبورگ انجام شد. در سال 2008 چیستیاکوف نظریه ای از فضاهای متریک مدولار ارائه داد. در حال حاضر نظریه مدولارها کاربرد گسترده به ویژه در مطالعه ی فضاهای ارلیخ دارد. این پایان نامه مشتمل بر سه فصل است. در فصل اول مفاهیم و قضایای...
مباحثی در فضاهای توپولوژیک مرتب
ناچبین در سال 1965 با قرار دادن یک رابطه ترتیب روی فضاهای توپولوژیک واستفاده ازاصول جداسازی به معرفی فضاهای توپولوژیک مرتب واصول جداسازی ترتیبی می پردازد. ازآن جا که این فضاها از اهمیت خاصی برخوردارند، مونی و ریچموند نیز با تعریف چنین رابطه ای روی فضای توپولوژیک خارج قسمتی، فضای توپولوژیک خارج قسمتی مرتب، نگاشت و ترتیب خارج قسمتی مرتب را تعریف کرده و به بیان خواص و قضایای مربوط به آن ها پ...
15 صفحه اولپروسیتی و فضاهای lp وزن دار
در سال 2007 ابطحی نصر اصفهانی و رجالی ثابت کردند اگر g یک گروه توپولوژیک موضعاً فشرده و نافشرده باشد و p < 2 >1آنگاه برای هر همسایگی فشرده k از عضو همانی g توابع f,g موجودند که f*g روی k بینهایت میشود به بیان دیگر f*g به عنوان یک تابع روی g موجود نیست.
مباحثی در فضاهای دو-نُرم و کاربردها
نظریه فضاهای نُــرمدار نقش محوری را در بسیاری از زمینه های ریاضیات دارد. در دهه اول قرن بیستم، فضاهای هیلبرت از این جهت مورد مطالعه قرار گرفتند که به عنوان ابزار بسیار ضروری در نظریه معادلات دیفرانسیل با مشتقات جزئی، مکانیک کوانتومی، تجزیه و تحلیل فوریه (که شامل برنامه های کاربردی در پردازش سیگنال و انتقال حرارت) و نظریه ارگودیک که زیر بنای ریاضی مطالعه ترمودینامیک هستند، بکار می روند. در این رس...
منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی شیراز - دانشکده ریاضی
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023